Standard Operating Procedure – Cytometry Facility – UZH					
Pages 1/2	NanoFCM SSC to nm conversion in FlowJo	July 2022			

General remarks

The NanoFCM software cannot display two fluorescent channels in combination with the particle size based on SSC signal. Here, we present a work-around solution for FlowJo.

I.) Generate the standard curve based on the S16M/S17M bead recording

- 1) Open the recording of S16M/17M beads in the NanoFCM software
- Change to SS-A in the x-axis of the dot plot (default is SS-H but you have usually better resolution with the area signal)
- Click on Auto Threshold button and select the "Small Signal" option
- 4) Click on the Size MESF button
- 5) In the new window select **Standard** (S16M or S17M) and click on **Find peak** button. "Width Min" and "Threshold" options can be adapted if peaks are not recognized correctly
- 6) Do a quick check of the standard curve for correct appearance. Next, copy the displayed formula and save it in a txt file

In this example: $y = 7.6347E-7*x^{(5.03099)}+0$

II.) Export data as FCS files

- 1) Select NFA data file to be exported
- 2) Adjust threshold (note that only data above threshold will be exported to the FCS file!)
- 3) Click Save button and select FCS 3.0 as format
- Repeat previous steps for all NFA files you want to export

III.) Generate size (nm) parameter in FlowJo

- 1) Open FlowJo and import the FCS files by drag & drop
- 2) Select the first file
- Go to Tools → Derive Parameters to open the transform window

- 4) Change the parameter name in the transform window
- 5) Insert following formula in the formula field

(<Param name="SS-A" /> /(X.XXX*10^-7))^(1/Y.YYY)

Replace the colored section with the numbers from the formula you got from the NanoFCM standard curve.

In our example: y = 3.73124E-7*x^(5.13867)+0

- 6) Decrease minimum & maximum range of the data to optimize the plot scaling
- 7) Apply the transformation to all files by dragging

°%ь	SS-A	in nm	onto	{ 🖥 } All	Samples
-----	------	-------	------	-----------	---------

IV.) What extra functionality do we get from this?

- > All 3 available channels can be displayed (SSC, FITC, PC5) in any order.
- > No more limitations on the number of gates.
- You can display subgates as shown here for an EV example labelled with CD63-GFP and stained for CD81. Note that the size distribution of EVs can be displayed for each gate by the generated "SS-A in nm" parameter. Interestingly, the GFP/CD81+ population seems to have an increase in the median EV size compared to the CD81+ only population...

